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A bstract

Precise real-time GPS orbit is required for a number of applica­
tions, including real-time Precise Point Positioning (PPP), long 
range RTK and weather forecasting. At present, users may take 
advantage of the predicted part of the IGS ultra-rapid orbit for 
real-time applications. Unfortunately, however, the accuracy of 
the predicted part of the ultra-rapid orbit is limited to about 10 
cm (the 24-hour predicted part), which is not sufficient for the 
above applications.
In this research a 6-hour predicted orbit was generated by 
extrapolating a concatenated group of previous precise 
ephemerides for 5 days. RINEX observation files correspon­
ding to the same period of precise ephemerides were collected 
from globally distributed tracking stations. Using Bernese soft­
ware, those observation files were utilized to make further 
improvement for the prediction. The resulted prediction was 
finally refined by implementing a modular, three-layer feed­
forward back-propagation neural network.

1. In t r o d u c t io n

The call for an ultra-rapid product was initially announced at the 
IGS Workshop held at La Jolla, CA, USA in 1999. The ultra­
rapid product was intended to satisfy the need for real-time and 
near real-time applications which could not be met by rapid and 
final products. The ultra-rapid ephemeris file contains a 48-hour 
arc in the sp3 format. The first 24-hour arc is obtained by fitting 
the data and products which are already available over the first 
24-hour period while the next 24-hour is predicted. In Feb. 2000 
(week #1050) the Jet Propulsion Laboratory (JPL) analysis 
center released its first ultra-rapid product twice a day at 00:00 
and 12:00 with an accuracy of 20 cm -  40 cm for the fitted part 
and 50 cm for the predicted part ([IGSMAIL-2717] JPL ultra­
rapid orbits). The product is available from JPL anonymous ftp 
site (ftp://sideshow.jpl.nasa.gov/pub/gipsy_products/). The 
Centre for Orbit Determination in Europe (CODE), an analysis 
center, started releasing their ultra-rapid product in June 2003. 
Today there are 8 analysis centers, which submit their ultra­
rapid products to the IGS Analysis Coordinator (located at 
GFZ Potsdam, Germany, http://www.gfz-potsdam.de/pbl/ 
igsacc/index_igsacc.html) to be combined on the basis of 
weighted averages (Beutler et al, 1995) to generate the official 
IGS precise ephemerides. The 12-hourly ultra-rapid product 
was switched to a 6-hourly product in week # 1276. Each 
analysis center implements its own physical models of geosta­
tionary forces, direct and indirect tidal effects, solar radiation 
pressure, relativistic effect, tropospheric delay and others, 
which is processed by a wide variety of softwares and proce­
dures. As an example, JPL uses GIPSY/OASIS II for 
processing hourly RINEX data from several stations. The

method is based on generating multiple orbital arcs by 
processing 3-hour observations using the JPL rapid 
solution/covariance to initialize the 3-hour orbital arc. These 
arcs are combined by a process called the inverse sequential 
smoothing process ([IGSMAIL-2717] JPL ultra-rapid orbits). 
The CODE procedure starts by preprocessing the phase obser­
vation in a baseline by baseline mode using Bernese 5.0. Cycle 
slips are detected and fixed using triple differences and bad data 
are removed. A 72-hour orbital arc is predicted using multiple 
previous precise orbits and RINEX data from several stations 
are used to improve the osculating orbital parameters for the 
predicted orbit. The long arc processed by CODE involves a 
robust and long-lasting model for solar radiation pressure, 
which justifies the adoption of 9 parameters SRP model in addi­
tion to ROCK4 and ROCK42 models (Dach et al, 2007). 
ESA/ESOC (European Space Agency/European Space 
Operation Centers) uses BAHN software to process RINEX 
data in a zero difference-ionospheric free combination. The 
pseudorange, phase observations and precise orbit ephemeris 
from 3 previous days are written to one file. This file is 
processed later with a group of other files such as station posi­
tions, satellite and station clock biases and satellite dynamic 
models to produce the ultra-rapid product (Romero et al, 2001). 
Geodetic Observatory Pecny (GOP) uses the same procedures 
and software adopted by the CODE to produce their ultra-rapid 
products (Dousa, 2003). Such variety of strategies and tech­
niques adds to the advantage of IGS products’ quality and 
reduces the possibility of having biased results.
Although the above-mentioned methods are highly efficient, 
their prediction accuracy is not high. The accuracy of the 
predicted part of the ultra-rapid orbit is limited to about 10 cm 
(predicted part), which is not sufficient for the above applica­
tions. To overcome this deficiency an ANN-based prediction 
model is developed in this paper. It is shown that the ANN- 
based prediction accuracy was found to be in the order of 3 cm. 
The reason behind using the ANN is its capability of detecting 
complicated nonlinearity underlying any data.

2 . A r t if ic ia l  N e u r a l  N e t w o r k s

The Artificial Neural Networks (ANN) is one of the most bril­
liant scientific achievements that is attempting to approach and 
simulate the biological brain potentials of learning, analysis, 
deduction and recognition. The idea of ANN was first brought 
to existence by Walter McClulloch, a psychiatrist, and Warren 
Pitts, a mathematician, who wrote the first paper of ANN in 
(1943) at University of Chicago, Haykins (1999). In contrast to 
digital computers where the data is saved and retrieved for 
further processing, the ANN, in turn, store knowledge that can 
be used for future purposes of modeling and reproduction. The
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ANN acquires this knowledge through a complicated training 
process based on the contents and behaviour of the input data 
and desired output (target), see Figure 1.

Figure 1. The basic units of ANN

The learning process starts by multiplying each of the input 
samples by certain weights {w) that are randomly initialized. The 
sum of these products for all the input samples in addition to an 
initial bias (b) are passed to a processing node (called a neuron), 
see Figure 2. The output of each neuron at a particular layer is 
passed to the next layer through a transfer function if) -  also 
referred to as activation function. A single layer with a nonlinear 
transfer function is called a perceptron. According to Civco and 
Waung (1994), "The transfer function is required to avoid satu­
ration of a processing node, caused by extremely large positive 
or negative internal summations”. This process is performed all 
the way down to the output layer where the error between the 
output and target is compared to a predefined amount (called a 
goal) to check whether the desired accuracy is reached. The 
previously mentioned error is equal to the sum of the square 
differences for all of these samples. If such difference is found 
to be less than the predefined goal, then it is fed back (or back- 
propagated) to establish a new iteration by updating the previous 
weights. The back-propagation algorithm is thoroughly 
discussed by Rumelhart (1986), Bishop (1995) and Ripely 
(1996). Basically, there is no standard or unique learning algo­
rithm for all types of ANN (Haykins 1999), however a successful 
learning algorithm must improve the network knowledge 
through the weight adjustment procedure such that the output 
converges appropriately to the desired target.

Figure 2. The architecture of a hidden layer

Most ANN package developers provide the user with a 
freedom to initialize and modify ANN parameters such as goal, 
learning rate, number o f iterations, transfer function, number

o f hidden layers, number o f neurons per layer, and other 
parameters, through a user interface facility to feature more 
flexibility and interaction. This is because the default parame­
ters - even though it appeals to many users - may not always fit 
every type of data. The effectiveness of ANN has made it 
popular in a wide variety of applications ranging from engi­
neering, science, economics, etc. For instance, in geomatics, 
the ANN was implemented by Miima et al (2001) for modeling 
geodetic deformations; Schuh (2002) for Earth orientation 
parameters; El-Rabbany et al (2002) for predicting sea ice 
condition; El-Rabbany and El-Diasty (2003) to obtain accurate 
tide predictions; and Kavzoglu and Saka (2005) to model local 
GPS/leveling geoid undulations.

3 . P r e d ic t io n  S t r a t e g y

The prediction process in this research is performed into two 
different steps. The first step employs Bernese 5.0 software to 
generate a 24-hour orbit ephemeris using IGS precise products 
(ephemerides, clock corrections, ERP files) and RINEX obser­
vation data prior to the day to be predicted. The second step 
utilizes the power of Artificial Neural Networks to improve the 
previously generated ephemeris.
3.1 Part One: Orbit Prediction using Bernese Software
The GPS satellite orbit prediction by Bernese can be summa­
rized into three main steps (Dach et al, 2007):
Here are the detailed procedures of each step:
a. Preparation of a priori orbit positions and partial deriva­

tives with respect to orbital parameters
• The procedure starts with importing precise ephemerides for 
five  days prior to the day to be predicted.

• Each of those precise ephemerides is converted to Bernese 
tabular format.

• The satellite clock correction coefficients are also extracted 
from each IGS precise ephemeris, combined, fitted to 2nd 
degree polynomial and stored into a *.CLK file so that they 
can be used later within the course of generating the 
predicted orbit.

• Then a second subroutine is performed to concatenate and fit 
the precise ephemeris to a curve of 10th degree polynomial 
and extrapolate that curve to an additional 24-hour orbit which 
represents the day to be predicted. That curve does not exactly 
fit the concatenated precise ephemeris. In other words there 
are some residuals between the curve and the concatenated 
ephemeris. Figure 3 shows an example of those residuals.

• The former subroutine also takes partial derivatives of the 
orbit coordinates with respect to the orbital parameters (only 
the six Keplerian parameters) and fits them to a 12th degree 
polynomial at 6-hour intervals.

• The coefficients of the ephemerides polynomial are stored to 
a binary *.STD file called a standard file while the coeffi­
cients of the radiation pressure are stored in a binary *.RPR 
file. The partial derivatives of the satellite positions with 
respect to the radiation pressure coefficients as well as the 
partial derivatives of the satellite positions with respect to the 
six Keplerian parameters are contained in this*./?/3/? file.
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b. Estimation of improved orbit parameters using RINEX 
observation files

• RINEX observation files from 32 stations corresponding to 
the same period of the precise ephemeris are imported to 
Bernese. Figure 4 shows the distribution of those stations.

• The code observations are used for clock synchronization 
between receivers and satellites.

• Station baselines are created and a double difference is 
performed.

• After running this subroutine the improved orbit parameters 
are stored in a binary osculating orbital element file (*.ELE).

c. Regenerate improved orbit
The orbital element file (*.ELE), the standard file (*.STD), the 
radiation pressure file (*.RPR) and the satellite clock correction 
file (*.CLK) are all used to update the a priori orbit ephemeris. 
After updating the orbit the residuals exhibit some improvement 
as shown in Figure 5.
3.2 Part Two: Prediction Enhancement using Artificial 

Neural Networks
o The residuals between the five  precise and fitted ephemerides 

are calculated.
o Those residuals are used to train a feed-forward back-propa- 

gation neural network.
o After training the network, the residuals of the new day are 

predicted.
o The predicted residuals are added to the predicted ephemeris 

of the new day to obtain its precise ephemeris.

4 . R e s u l t s  a n d  D is c u s s io n

The IGS precise rapid ephemerides for several days preceding 
the day to be predicted - which is July 7th, 2006 - were used. 
Making numerous trials, only five days of those ephemerides - 
starting from July 2nd to July 6th, 2006 - were found sufficient 
for the purpose of this research. The precise ephemerides were 
concatenated and extrapolated to generate a 24-hour orbit of 
July 7th, 2006 as described in 2.1 above. The resulting orbit, 
which combines the five plus the newly generated ephemeris, 
is called an a priori orbit. Figure 3 below shows the residuals of 
the a priori orbit compared to the corresponding precise rapid 
ephemeris before any improvement is applied. As shown from 
Figure 3, the predicted part was apparently far from the desired 
accuracy and therefore it had to be improved by a subsequent 
process. The RINEX observation file for several IGS stations 
were downloaded from (ftp://cddis.gsfc.nasa.gov/gps/data/ 
daily/2006) for the period between July 2nd and July 6th, 2006. 
We found that the number of stations should neither be too low 
nor too high. If the number of stations is much greater than 30, 
then the process will be time and memory consuming. On the 
other hand, too few stations won’t be adequate to produce a 
reliable solution. Performing many experiments, the number of 
stations was eventually settled to 32 global stations (see Figure 
4). The RINEX observations were processed to produce the 
osculating orbital element file, which was used to improve the 
a priori orbit in the final step. Figure 5 shows the residuals of

the a priori orbit after improvement.
At this point, the prediction should be subjected to further

Figure 3. The residuals of the a priori orbit before orbit improvement

Figure 4. Distribution of selected stations

enhancement. Almost all predicting strategies apply sophisti­
cated procedures to model the stochastic parameters of an orbit 
ephemeris. As compared to the standard mathematical methods 
which goes no further than data curve-fitting based on the rule 
(the most adjacent are the most relevant), ANN not only curve- 
fits the data but also detects the correlation of that data. In 
other words, ANN curve-fits the correlation itself on a weight 
basis, computes the stochastic parameters and restores them 
during prediction. Those were the very reasons that ANN was 
resorted to in this research where the residuals of five 
preceding days were used to train the ANN.
The ANN notoriously consumes computer resources when the 
training data is relatively large. Therefore attempts were made 
to compact the amount of data and at the same time maintain a 
good quality of output. The best situation was finally found 
when the number of days was only three (July 4th to 6th). After 
training the ANN, residuals of July 7th, 2006 were finally 
produced. The predicted residuals were added to the improved

Figure 5. The residuals of the a priori orbit after improvement
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orbit to obtain the rapid precise ephemeris of July 7th, 2006. 
The accuracy of this prediction for the first six hours of July 
7th, 2006 is depicted in Figure 6 below. The accuracy tends to 
slightly degrade after hour 6:00. The same procedure was 
repeated for another group of data and ephemeris covering a 
span between Feb. 5th and Feb. 9th, 2007 to predict the first 6- 
hour arc of Feb. 10th, 2007. The prediction accuracy is shown 
in Figure 6.

DX (cm) DY (cm) DZ (cm)

1.61 3.06 4.22
DX (cm) DY (cm) DZ (cm)

RMS 1.53 0.90 0.85

Overall RMS \ 1.96 | | Overall RMS \ 5.46 |

DX (cm) DY (cm) DZ (cm)
1.05 2.22 2.46

DX (cm) DY (cm) DZ (cm)
RMS 0.74 2.14 0.77

| OvetxdlRMS | 2.39 ~| [ Overall RMS \ \

Figure 6. The prediction accuracy of July 7th, 2006 (top) and Feb. 10th, 2007 (bottom)

C o n c l u s i o n s  a n d  f u t u r e  o u t l o o k

Artificial Neural Networks (ANN) proved to be powerful in 
GPS orbit prediction improvement. It has been shown that the 
obtained precision of ANN-based prediction is less than 3 cm, 
which is evidently superior to that of the IGS ultra-rapid. This 
makes the ANN-based prediction method more reliable than the 
IGS ultra-rapid product for real time applications. Future 
research will enhance the orbital prediction through the use of 
35 well-distributed IGS tracking stations. In addition, Neural 
Networks will be applied to predict the clock corrections, 
which is expected to reflect positively on the prediction Jk 
accuracy.

A c k n o w l e d g m e n t s

This research is supported in part by the Natural Science and 
Engineering (NSERC), the GEOIDE NCE and the Ontario 
Centres of Excellence (OCE). The authors would like to thank 
the Bernese support team for their valuable help.

R e f e r e n c e s :

Beutler G, Kouba J, and Springer T (1995) Combining the 
Orbits of the IGS Analysis Centers, Bull. Geod. Vol. 69, No. 4,
pp. 200-222.

Dennis M (2005), NGA GPS Monitor Station High- 
Performance Cesium Frequency Standard Stability, National 
Geospatial-Intelligence Agency.
El-Rabbany A, Auda G and Abdelazim S (2002) Predicting Sea 
Ice Conditions Using Neural Networks, Journal o f Navigation 
Vol. 55, 137-143.
El-Rabbany A and El-Diasty M (2003) A New Approach to 
Sequential Tidal Prediction, Journal o f Navigation Vol. 56, 
305-314.
Haykin S, (1999) Neural Networks: A Comprehensive 
Foundation. Second Edition. Prentice Hall.
Jan Dousa (2003) GPS Orbit Determination For Meteorology 
Applications. Research Institute of Geodesy, Topography and 
Cartography.
Kouba J (2003) A Guide to using IGS Products, Natural 
Resource Canada, IGS Publication.
Kavzoglul T and Saka M H (2005) Modelling local 
GPS/Levelling Geoid Undulations using Artificial Neural 
Networks, Journal o f Geodesy Vol. 78 No. 9, pp. 520-527.
Miima JB, Niemiemeier W and Kraus B (2001) A Neural 
Network Approach to Modelling Geodetic Deformations. In: 
Carosio A, Kutterer H (eds) Proc 1st Int symp Robust Stat 
Fuzzy Tech in Geoid and GIS, Swiss Federal Institute of 
Technology, Zurich, pp 111-116.
Norgaard M (2000) Neural Network Based System 
Identification Toolbox, Tech. Report. 00-E-891, Department of 
Automation, Technical University of Denmark.
Dach R et al (2007) Bernese GPS Software Version 5.0 
Manual, Astronomical Institute, University of Bern.
Romero I et al (2001) Moving Precise Orbit Determination 
Towards Real-Time. Proceedings o f GNSS 2001, Seville, 
Spain, May 2001, pp. 1-4.
Schuh et al (2002) Prediction of Earth Orientation Parameters 
by Artificial Neural Networks, Journal o f Geodesy Vol. 76 No. 
5, pp. 247-258.

A b o u t  t h e  A u t h o r s

Dr. Ahmed El-Rabbany, P.Eng. is an Associate Professor of 
Geomatics Engineering in the Department of Civil 
Engineering, Ryerson University. Dr. El-Rabbany’s areas of 
expertise include: Satellite positioning and navigation, inte­
grated navigation systems, Geodesy and hydrographic 
surveying. He is also the Chair of the Toronto Branch of the 
Canadian Institute of Geomatics. He can be reached by email 
at rabbany@ryerson.ca.
Hamad Yousif, MASc student, is supervised by A. El- 
Rabbany at Ryerson University. He is a member of GEOIDE 
and the Canadian Institute of Geomatics (CIG). Hamad has a 
background in Electrical Engineering from Sudan. He is 
intending to start his PhD in September 2007. His research 
focuses on the evaluation of orbital interpolation methods 
and the development of a neural network-based model for 
precise orbit prediction. He can be reached by email at 
h2mohame@ryerson.ca.

ANN prediction error for PRN23

IGS ultra-rapid prediction error for PRN11

10 Ontario Professional Surveyor, Summer 2007

mailto:rabbany@ryerson.ca
mailto:h2mohame@ryerson.ca

